Teacher's Tools® Chemistry ### Thermodynamics: Spontaneity and Chemical Equilibrium: Student Review Notes At constant temperature and pressure, the **Second Law of Thermodynamics** can be written as: $$\Delta \mathbf{S}_{\mathrm{univ}} = \Delta \mathbf{S}_{\mathrm{sys}} + \Delta \mathbf{S}_{\mathrm{surr}} \text{ and } \Delta \mathbf{S}_{\mathrm{surr}} = -\Delta \mathbf{H}$$ $$\Delta \mathbf{S}_{\mathrm{univ}} = \Delta \mathbf{S}_{\mathrm{sys}} + -\frac{\Delta \mathbf{H}}{\mathbf{T}} \geqslant \mathbf{0}$$ Multiplying both sides by -T, and noting that multiplying by a negative number reverses the sense of the inequality, yields $$-T\Delta S_{univ} = \Delta H - T\Delta S_{svs} \leq 0$$ Multiplication of $\Delta \mathbf{S}_{univ}$ by -T puts the entropy term in units of energy (J/mol) rather than units of entropy (J/mol K). The system-oriented function $-T\Delta \mathbf{S}_{univ}$ is called the Gibbs Free Energy, $\Delta \mathbf{G}$ named in honor of J. Willard Gibbs, one of fathers of modern thermodynamics. The Second Law then becomes: $$\Delta G = \Delta H - T \Delta S$$ The Second Law says that $\Delta \mathbf{S}_{univ} > 0$ for a spontaneous process and that $\Delta \mathbf{S}_{univ} = 0$ for a system at equlibrium. Since absolute temperature, T is always positive, -T $\Delta \mathbf{S}_{univ}$ will be negative for a spontaneous process or $\Delta \mathbf{G} < 0$ indicates spontaneity and $\Delta \mathbf{G} = 0$ indicates a system at equilibrium. In terms of the applicability of what you learn in a chemistry class to life at large, this is a pretty profound equation. It shows that natural systems have a tension between energy ($\Delta \mathbf{H}$ is heat energy) and randomness ($\Delta \mathbf{S}$). For any natural or man-made system, from a government to an economy to a corporation, it is wise to take into account both energy and entropy. This is the yin and yang of the natural world. In summary $$\Delta G = \Delta H - T \Delta S$$ $\Delta G < 0$ indicates that a chemical reaction is spontaneous $\Delta G = 0$ indicates that a reaction is at equilibrium $\Delta G > 0$ Indicates that the reverse reaction is spontaneous The **sign** of $\Delta \mathbf{H}$ and $\Delta \mathbf{S}$ can tell you a lot about the spontaneity of a reaction. Remember that exothermic means $\Delta \mathbf{H}$ is negative, endothermic means $\Delta \mathbf{H}$ is positive and you can generally tell the sign of $\Delta \mathbf{S}$ from the phase changes associated with a reaction. | sign of ΔH | sign of ∆S | sign of Δ G | spontaneous as written | | S | |--------------------|------------|--------------------|----------------------------|-------|---------------------| | - | + | - | yes | All T | High T | | + | - | + | no; reverse is spontaneous | | → Δ H | | + | + | + or - | favored at high temp | Low T | No T | | - | _ | + or - | favored at low temp | | | # Teacher's Tools® Chemistry ### Thermodynamics: Spontaneity and Chemical Equilibrium: Student Review Notes #### Calculation of ΔG 1) Calculation of ΔG from tabulated ΔH° and ΔS° data. You can clearly see from the equation $\Delta \mathbf{G} = \Delta \mathbf{H} - T\Delta \mathbf{S}$ that the change in Gibbs Free Energy is dependent on temperature. The dependence is right there as a variable. The question is, how can we use ΔH° and ΔS° data, data taken at 1 atm., 1 M concentrations and typically at 298 K, to calculate a quantity that has temperature dependence? The answer is that we accept some amount of error in the calculation and recognize that in actuality, ΔH° and ΔS° don't vary a lot with temperature. We therefore can use standard state tabulated data of enthalpies of formation and absolute entropies to calculate a value for $\Delta \mathbf{G}^{\circ}$. Example calculation: From the given data, calculate $\Delta \mathbf{G}^{\circ}$ for the reaction shown at 298 K. $$2 \text{ NO}_{(g)} + \text{ O}_{2(g)} \longrightarrow 2 \text{ NO}_{2(l)}$$ $$\Delta \text{H}^{\circ}_{f} \text{ (kJ/mol)} \qquad 90 \qquad 0 \qquad 34 \qquad \Delta \text{H}^{\circ}_{rxn} = 2(34 \text{ kJ/mol}) - 2(90 \text{ kJ/mol}) = -112 \text{ kJ/mol}$$ $$S^{\circ}_{f} \text{ (J/mol K)} \qquad 211 \qquad 205 \qquad 240 \qquad \Delta S^{\circ}_{rxn} = 2(240 \text{ J/mol K}) - [2(211 \text{ J/mol K}) + 205 \text{ J/mol K}] = -112 \text{ kJ/mol}$$ $$\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn} = -112 \text{ kJ/mol} - 298 \text{ K (-.147 kJ/mol K)} = -68 \text{ kJ/mol}$$ watch your units here So $\Delta \mathbf{G}$ < 0 indicates that this reaction is spontaneous in the forward direction at 298 K. In this example, both ΔH^o and ΔS^o are negative. Another interesting calculation therefore is the temperature at which the reaction is in equilibrium and above which, the reverse reactions becomes spontaneous. At equilibrium $\Delta \mathbf{G} = 0$: $$0 = \Delta H^{\circ}_{rxn} - T_{eq} \Delta S^{\circ}_{rxn} \qquad T_{eq} = \Delta H^{\circ}_{rxn} / \Delta S^{\circ}_{rxn} = (-112 \text{ kJ/mol})/(-.147 \text{ kJ/mol K}) = 762 \text{ K}$$ Above this temperature, ΔG will be positive and therefore the reverse reaction will be spontaneous 2) Calculation of ΔG from tabulated standard free energy of formation data. This is just like using heat of formation data and just as in the case of ΔH^o_f , pure elemental species in their most stable state have a value of 0. $$2 \text{ NO}_{(g)} + \text{ O}_{2(g)} \longrightarrow 2 \text{ NO}_{2(l)}$$ $$\Delta G^{\circ}_{f} \text{ (kJ/mol)} \qquad 87 \qquad 0 \qquad \qquad 52 \qquad \Delta G^{\circ}_{rxn} = 2(52 \text{ kJ/mol}) - 2(87 \text{ kJ/mol}) = -70 \text{ kJ/mol}$$ # Teacher's Tools® Chemistry ### Thermodynamics: Spontaneity and Chemical Equilibrium: Student Review Notes #### Gibbs Free Energy and Equlibrium The change in Gibbs Free Energy and the equlibrium constant are related by the equation: $$\Delta G = \Delta G^{\circ} + RTInQ_{C}$$ where R is 8.31 J/mol·K and Q_C is the reaction quotient. $\Delta G = 0$ is the condition for equlibrium and the equation reduces to: $$0 = \Delta G^{\circ} + RTInK_{C}$$ $$\Delta G^{\circ} = -RTInK_{C} \text{ or } K_{C} = e^{-\Delta G^{\circ}/RT}$$ **These equations are super-important.** They relate tabulated thermodynamic data to the value of an equilibrium constant. Here is an example that ties together thermodynamics and equilibrium: Given the following thermodynamic data, is the following reaction spontaneous at 298 K and what is the value of the equilibrium constant at 298 K? $$C_2H_{2(g)} + 2H_{2(g)} \longrightarrow C_2H_{6(g)}$$ $\Delta H^o_f (kJ/mol)$ 226.7 0 -84.7 $S^o_f (J/mol \ K)$ 200.9 130.7 229.6 1) Is the reaction spontaneous, i.e calculate ΔG $$\Delta H^{o}_{rxn} = 1(-84.7 \text{ kJ/mol}) - [(226.7 \text{ kJ/mol}) + 0] = -311.4 \text{ kJ/mol}$$ $$\Delta S^{o}_{rxn} = (229.6 \text{ J/mol K}) - [(200.9 \text{ J/mol K}) + 2(130.7 \text{ J/mol K})] = -232.7 \text{ J/mol K}$$ $$\Delta G^{o}_{rxn} = \Delta H^{o}_{rxn} - T\Delta S^{o}_{rxn} = -311.4 \text{ kJ/mol} - 298 \text{ K} (-0.2327 \text{ J/mol K}) = -242.1 \text{ kJ}$$ Δ G< 0 and therefore at 298 K the reaction is spontaneous. 2) Calculate the equlibrium constant at 298 K. $$K_{C} = e^{-\Delta G^{\circ}/RT}$$ $K_{C} = e^{(-232,100 \text{ J})/(8.314 \text{ J/mol K})(298 \text{ K})}$ $K_{C} = 2.74 \times 10^{42}$