Teacher's Tools® Chemistry

Atoms and electrons: Quantum Numbers: Student Review Notes

Quantum Numbers

Each electron has a set of 4 quantum numbers that fixes its energy and the associated orbital

- 1. **Principle quantum number, n**, gives the primary energy level n = 1, 2, 3, 4, 5, 6, 7.
- 2. Angular momentum quantum number, I gives the sublevel (s, p, d, f stuff) I = 0, 1, 2, 3,...n-1

0 refers to an s-sublevel

1 refers to an p-sublevel

2 refers to an d-sublevel

3 refers to an f-sublevel

The letter designations have a historical context.

They describe the spectral line relating

to transitions involving these levels;

eg, "s" denotes a "sharp" line.

- 3. **Magnetic quantum number,** m_{\parallel} gives the orientation of the subshell (orbital) m_{\parallel} = -l,...0...,+l. (This gives each orbital a unique name). Like, the three orbitals on a p-sublevel would be named -1, 0 and 1.
- 4. **Magnetic spin quantum number, m_s**, This differentiates the two electrons that can exist in a single orbital. $m_s = +1/2$ (spin up) or -1/2 (spin down).

The **Pauli Exclusion Principle** says that no two electrons on an atom can have the same 4 quantum numbers. What this says is that you can only have 2 electrons in an orbital since m_S only has two possible values and therefore, if an orbital is doubly occupied, the electrons must have opposite spins.

What are the possible quantum numbers for this electron?

2,1,-1,1/2 2,1,-1,-1/2 2,1,0,1/2 2,1,0,-1/2

2,1,-1,-1/2 All these are possible. Orbitals are degenerate, i.e. they have the same energy.

You need to understand the overlap between aufbau notation and quantum numbers

Take a look at the third energy level:

Teacher's Tools® Chemistry

Atoms and electrons: Quantum Numbers: Student Review Notes

Electronic Configuration: This gives the number of electrons in each principle energy level and sublevel. This is where you use the aufbau principle (s,p,d,f stuff).

Orbital Diagrams: This is a diagram that shows electrons in each orbital with the additional information of the spin of the electron (arrow up for positive spin and arrow down for negative spin).

Quantum Numbers: These are the set of 4 numbers, n, l, m_l , m_s propsed by Planck that uniquely describe the energy of an electron.

Orbital Shapes

These are solutions to Schrodinger's equation and represent the space in which electrons reside for a given set of 4 quantum numbers

s-sublevel

An s-sublevel is denoted by the quantum number I=0. It contains 1 orbital that is labeled with the quantum number $m_I=0$.

A p-sublevel is denoted by the quantum number I=1. It contains 3 orbitals that are labeled with the quantum number $m_I=-1,0,1$.

d-sublevel

A d-sublevel is denoted by the quantum number I=2. It contains 5 orbitals that are labeled with the quantum number $m_I=-2,-1,0,1,2$.

f-sublevel

An f-sublevel is denoted by the quantum number I=3. It contains 7 orbitals that are labeled with the quantum number $m_I=-3,-2,-1,0,1,2,3$.

Copyright 2005-PTAS, Inc.

0101SN04.pdf