Teacher's Tools® Chemistry

Nuclear Chemistry

Radioactivity -- the tendency of an unstable nucleus to emit radiation

What makes a nucleus stable? 1) Atomic number less than or equal to 83

- 2) Ratio of neutrons to protons = 1 for light elements (atomic number <20)
- 3) Ratio of neutrons to protons less than or equal to 1.6 for heavier elements
- 4) an even number of both of protons and neutrons
- 5) a "magic" number of protons or neutrons 2, 8, 20, 28, 50, 82, and 126

Nuclear Decay Processes

1) Alpha (α) decay – emission of an α particle, which is simply a He nucleus, 4_2 He

 $^{226}_{88}$ Ra \longrightarrow $^{222}_{86}$ Rn + $^{4}_{2}$ He α decay is a way for a heavy unstable nucleus to decrease its mass

!!!! Note that protons and neutrons (and mass number) are balanced in the nuclear equation !!!!

2) Beta (β) decay – emission of a β particle, which is simply an electron, ${}^{0}_{-1}e$ or ${}^{0}_{-1}\beta$

$${}_{1}^{3}H \longrightarrow {}_{2}^{3}He + {}_{-1}^{0}e$$

** In β decay, a neutron is transformed into a proton and β particle: ${}^1_0 n \longrightarrow {}^1_1 p + {}^0_{-1} e$ Because β decay destroys a neutron and makes a proton, it tends to occur when the ratio N/Z is too large

3) Positron decay – the opposite of β decay \longrightarrow emission of a positron ${}^0_1\beta$

$$^{30}_{15}P \longrightarrow ^{30}_{14}Si + ^{0}_{1}\beta$$

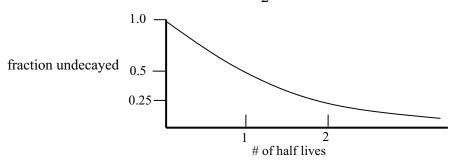
** In positron decay, a proton is transformed into a neutron and a positron ${}^1_1 p \longrightarrow {}^1_0 n + {}^0_1 \beta$ Positron decay will tend to occur when the ratio N/Z is too small

- 4) Gamma (γ) ray emission emission of high-energy radiation, which always occurs in conjunction with alpha or beta decay
- 5) Electron Capture the nucleus captures a core electron, destroys a proton, and emits a gamma ray

$$^{201}_{80}$$
Hg + $^{0}_{-1}$ e \longrightarrow $^{201}_{79}$ Au + $^{0}_{0}$ γ

Nuclear Bombardment Reactions (Nonspontaneous Transmutation)

$$^{14}_{7}\mathrm{N} + ^{4}_{2}\alpha \longrightarrow ^{17}_{8}\mathrm{O} + ^{1}_{1}p$$
 (Rutherford, 1919)


*** Bombardment reactions are used to synthesize the <u>transuranium</u> and other non-natural elements ****

Teacher's Tools® Chemistry

Nuclear Chemistry

<u>Half-life</u> $(t_{1/2})$ – the time required for one-half of the radioactive atoms in a sample to decay

Half-life equation \longrightarrow Fraction remaining = $\left(\frac{1}{2}\right)^n$ where n is the number of half-lives gone by

***** Note: All nuclear decay processes occur by first-order kinetics *****

Classic Use of Nuclear Decay radioactive dating (e.g. carbon-14 dating)

Example 1 – A bottle of wine was found to contain 2% of the tritium (³H) that was originally present when the wine was bottled. If the half-life of tritium is 12.3 yr, how old is the bottle of wine?

A typical step in half-life problems is to express amount in terms of only the initial amount.

It is a first order decay process and you should know the integrated form of a first order rate law and the relationship between the half-life and the rate constant.

$$ln[A] - ln[A]_o = -kt$$
 $t_{1/2} = \frac{.69}{k}$ \longrightarrow $k = .69/12.3 \text{ yrs} = .056 \text{ yrs}^{-1}$
 $ln(.02 \text{ A}_o) = -(.056 \text{ yrs}^{-1})t$ \longrightarrow $t = .70 \text{ yrs}$

Energetics of Nuclear Transformations (Binding Energy, etc.)

Nuclear binding energy is the energy required to break up a nucleus into its component protons and neutrons. This is the conversion of mass to energy that accompanies an exothermic nuclear reaction.

Essential info:
$$m_{proton} = 1.0078 \text{ amu}$$
; $m_{neutron} = 1.0087 \text{ amu}$; $m_{neutron} =$

The difference between the mass of an atom and the sum of the masses of its protons, neutrons and electrons is called the **mass defect.**

In both cases you can calculate the amount of energy associated with a mass difference using Einstein's relation

$$\Delta E = (\Delta m)c^2$$

 ΔE = the energy released

 Δm = the mass difference between the nucleus and the sum of the individual components

c =the speed of light 2.998 x 10⁸ m/s

Make sure that your units are consistent. Use joules for energy, kilograms for mass and meters/second for speed