Teacher's Tools® Chemistry

Chemical Reactions: Complexation Reactions: Student Review Notes

Coordinate Covalent Bonds: one species donates both electrons to the bond

Transition metals can behave like Lewis Acids (electron pair acceptors) in the formation of what are called **complex ions**. A **coordination compound** typically consists of a complex ion and counter ion.

The molecules or ions that surround the metal in a complex ion are called **ligands**. The ligands act like a Lewis Base in that they donate a pair of electrons. A ligand must therefore have at least one unshared pair of electrons. The type of bond between the metal and the ligand is a **coordinate covalent bond**. In a coordinate covalent bond, one of the bonding atoms supplies both of the electrons.

The atomic in a ligand that is bound to the metal is called the donor atom. The coordination number is defined as the number of donor atoms surrounding a metal in a complex ion.

Here are some molecules that commonly act as ligands:

Here are some common examples of complexation reactions (not balanced):

A. Ammine Complexes--concentrated or excess ammonia added to:

Silver Chloride:
$$AgCl_{(s)} + 2NH_3 \longrightarrow Ag(NH_3)_2^+_{(aq)} + 2Cl^-_{(aq)}$$

Silver Cation: $Ag^{2^+}_{(aq)} + 2NH_3 \longrightarrow Ag(NH_3)_2^+_{(aq)}$

Zinc Hydroxide: $Zn(OH)_{2(s)} + 4NH_3 \longrightarrow Zn(NH_3)_4^{2^+}_{(aq)} + 2OH^-_{(aq)}$

Zinc Cation: $Zn^{2^+}_{(aq)} + 4NH_3 \longrightarrow Zn(NH_3)_4^{2^+}_{(aq)}$

Copper (II) Hydroxide: $Cu(OH)_{2(s)} + 4NH_3 \longrightarrow Cu(NH_3)_4^{2^+}_{(aq)} + 2OH^-_{(aq)}$

Copper Cation: $Cu^{2^+}_{(aq)} + 4NH_3 \longrightarrow Cu(NH_3)_4^{2^+}_{(aq)}$

B. Cyanide and thiocyanide Complexes--excess cyanide or thiocyanide anion added to:

Silver Chloride:
$$\begin{array}{lll} \text{AgCN}_{(s)} \ + \ \text{CN}^-_{(aq)} & \longrightarrow \text{Ag(CN)}_{2^-_{(aq)}} \\ \text{Silver Cation:} & \text{Ag}^{2^+_{(aq)}} \ + \ \text{CN}^-_{(aq)} & \longrightarrow \text{Ag(CN)}_{2^-_{(aq)}} \\ \text{Iron (III) Hydroxide:} & \text{Fe(OH)}_{3(s)}^3 + \text{SCN}^-_{(aq)} & \longrightarrow & \text{Fe(SCN)}_{6^{3^-_{(aq)}}} \\ \text{Silver Cation:} & \text{Fe}^{3^+_{(aq)}} \ + \ \text{SCN}^-_{(aq)} & \longrightarrow & \text{Fe(SCN)}_{6^{3^-_{(aq)}}} \\ \end{array}$$

C. Hydroxide Complexes--a concentrated/excess strong base added to:

Aluminum Hydroxide:
$$AI(OH)_{3(s)} + OH^{-}_{(aq)} \longrightarrow AI(OH)_{4-}^{-}_{(aq)}$$
Aluminum Cation: $AI^{3+}_{(aq)} + OH^{-}_{(aq)} \longrightarrow AI(OH)_{4-}^{-}_{(aq)}$
Aluminum oxide: $AI_{2}O_{3(s)} + OH^{-}_{(aq)} \longrightarrow AI(OH)_{4-}^{-}_{(aq)}$
Zinc Hydroxide: $Zn(OH)_{2(s)} + 2OH^{-}_{(aq)} \longrightarrow Zn(OH)_{4-}^{2-}_{(aq)}$
Zinc Cation: $Zn^{2+}_{(aq)} + 2OH^{-}_{(aq)} \longrightarrow Zn(OH)_{4-}^{2-}_{(aq)}$